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Introduction 
 
All cpuModules and utilityModules CM310, CM312, CM313 designed by Real Time Devices have serial ports 
which support RS232 and RS422/485. RS-232 is a well known interface used to connect a computer to serial mice, 
modems and other devices. RS422/485 is less popular but it has some advantages such as cable length up to 4000 
feet and the option to connect up to 32 computers/devices in a network. Due to the fact that there are no standard 
RS422/485 devices (like mice or modems) users need to develop their own protocol and software for serial 
communication with RS422/485. For more details on RS422/485 see a book: Jan Axelson “Serial Port Complete” 
ISBN 0965081923 
 

Programming 
 
In software, using RS422/485 is very similar to using RS232. One difference is that when using interface RS422/485 
several computers can be connected together. When connecting more then 2 nodes some form of arbitration is 
needed. The user must develop a protocol to make sure that no two devices send data at the same time. Usually, 
communication is initiated by a specified master computer. The other computer/device transmits data in reply to the 
master’s request. All other computers/devices would stay in receiving mode with disabled sending (line break).  
To control sending, the RTS signal is used. On all RTD boards, a low RTS signal enables sending and high RTS 
disables it. Hardware flow control is not used for RS422/485 communications because RTS is in use. 
 

DOS Example Code 
 
/*************************************************************************** 
        File Name:    DRVR485.C 
        Operating System:   ROM-DOS 
        Compiler:    Borland C++ 3.1 
        Version:     1.0 
 
Sending a string of data. The first byte to be sent is the address of the recipient computer/device. All computers must 
check the address and ignore the message if it is different from its own. 
PORT – IO address the serial port. 
TERMINATION – end of transmitting byte = 0xC 
 
        Copyright (c) 2003, Real Time Devices USA, Inc. 
****************************************************************************/ 
 
//send a string to the other computer 
//address - address of the other computer/device 
// commandString - pointer to a string to send 
// returns TRUE if string sent, 
// FASLE if error occur  
 
BOOL sendString(char address, char* commandString) { 

char byteToSend=0; 
//flag that sets when TX buffer is ready to get more bytes 
char checkbuffer = 0x20;  
/* Turn RTS off to enable transmission*/ 
outportb(portVar.PORT + 4 , 0x09);   
outportb(portVar.PORT, address); 
while (1) { 

// wait for buffer ready or empty (depending on buffercheck) 
// wait until buffer is ready 
while((inportb(portVar.PORT+5) & checkbuffer) == 0x00);  
if (TERMINATION==byteToSend) break; 
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if (*commandString) { 
byteToSend = *commandString; 
commandString++; 

} 
else { 

byteToSend = TERMINATION; 
checkbuffer = 0x40; //flag that sets when TX buffer is empty 

} 
outportb(portVar.PORT, byteToSend); 
} 
/* Turn RTS on to disable transmission */ 
outportb(portVar.PORT + 4 , 0x0B);   
return TRUE; 

} 
 

Windows Example Code 
 

This code is a modified Visual C++ 6.0 example from the Microsoft Development Network (MSDN). The original 
example program can be downloaded from the following URL: 
 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vcsample98/html/vcsmpserialsampleforcommunicationsdemonstration.asp 
 
/*************************************************************************** 
        File Name              : TTY.C 
        Operating System  : Windows 95, 98, ME, NT, 2000, XP 
        Compiler               : Visual C++ 
        Version                 : 6.0 
 
*       This is a part of the Microsoft Source Code Samples. 
*       Copyright (C) 1993-1997 Microsoft Corporation. 
*       All rights reserved. 
***************************************************************************/ 
 
To make this program work with interface RS422/485 need to modify the following code of the original program: 
 
1) In function  
BOOL NEAR SetupConnection( HWND hWnd ) 
Replace code:  
   if (bSet) 
      dcb.fDtrControl = DTR_CONTROL_HANDSHAKE ; 
   else 
      dcb.fDtrControl = DTR_CONTROL_ENABLE ; 
 
with the following code: 
    dcb.rRtsControl = RTS_CONTROL_DISABLE;  //disable hardware flow control 
 
2) In function  
BOOL NEAR WriteCommBlock( HWND hWnd, LPSTR lpByte , DWORD dwBytesToWrite) 
 
After code: 
   if (NULL == (npTTYInfo = GETNPTTYINFO( hWnd ))) 
      return ( FALSE ) ; 
 
need to insert the following code: 
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EscapeCommFunction( COMDEV(npTTYINFO), CLRRTS); // Clear RTS right before  

//starting transmitting 
 
3) In function  
DWORD FAR PASCAL CommWatchProc( LPSTR lpData ) 
 
Need to replace the following code: 
if (!SetCommMask( COMDEV( npTTYInfo ), EV_RXCHAR )) 
      return ( FALSE ) ; 
 
With the following: 
if (!SetCommMask( COMDEV( npTTYInfo ), EV_RXCHAR|EV_TXEMPTY ))  
    return ( FALSE ) ; // Add the event to monitor:  empty transmitting buffer 
  
After the following code:  
WaitCommEvent( COMDEV( npTTYInfo ), &dwEvtMask, NULL ); 
 
Need to add the following code: 
 if ((dwEvtMask & EV_TXEMPTY) == EV_TXEMPTY) { 
    EscapeCommFunction( COMDEV( npTTYInfo ), SETRTS ) ;  // Set RTS  

//immediately after transmitting is done 
} 
 

Linux Example Code 
 
For an example of how to use RS422/485 serial port mode under Linux, please see the Software Product 
SWP-700020032 "RS422/485 Serial Port Mode Example Program for Linux" available from the RTD web site. 


